

Kieback&Peter

BETRIEBSANLEITUNG

MF100-SR UND MF100-SR-E
STELLANTRIEB MIT NOTSTELLFUNKTION
FÜR DURCHANGS-/DREIWEGEVENTILE DER
BAUREIHEN RK/RB/RF/RGD/RWG/RGDE

Dieses Dokument lässt alle Ausgaben mit älterem Datum ungültig werden. Diese Ausgabe unterliegt keiner automatischen Aktualisierung. Änderungen vorbehalten.

Die Abbildungen in diesem Dokument wurden mit größter Sorgfalt erstellt. Dennoch können Abweichungen zum ausgelieferten Produkt nicht ausgeschlossen werden.

Die Originalbetriebsanleitung ist in deutscher Sprache verfasst.

Die Dokumentationen anderer Sprachen wurden aus dem Deutschen übersetzt.

Kieback&Peter haftet nicht für Schäden, die mittelbar oder unmittelbar durch den unsachgemäßen Gebrauch dieses Gerätes entstehen.

Copyright © 2023 Kieback&Peter GmbH & Co. KG

Alle Rechte vorbehalten. Kein Teil dieses Dokumentes darf in irgendeiner Form (Druck, Fotokopie oder anderes Verfahren) ohne schriftliche Genehmigung von Kieback&Peter reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Kieback&Peter GmbH & Co. KG Tempelhofer Weg 50 12347 Berlin

Telefon: +49 30 60095-0
Telefax: +49 30 60095-164
info@kieback-peter.de
www.kieback-peter.de

Inhaltsverzeichnis

Inhal	t :	Seite
1	Hinweise zu dieser Betriebsanleitung	5
1.1	Gültigkeit der Betriebsanleitung	5
1.2	Darstellungsmittel	
2	Sicherheit	
2.1	Erklärung von Sicherheits- und Warnhinweisen	5
2.2	Grundlegende Sicherheitshinweise	6
2.3	Verantwortung des Betreibers	7
2.4	Qualifikationen des Personals	7
2.5	Bestimmungsgemäßer Gebrauch	8
3	Beschreibung	8
3.1	Identifikation	9
3.2	Stellantrieb	10
3.2.1	Aufbau	10
3.2.2	Abmessungen	10
3.2.3	Technische Daten	11
3.2.4	Zubehör	12
3.3	RK15RK50/65K(-BF) Dreiwege-/Durchgangsventil mit Stellantrieb	13
3.3.1	Typen	13
3.3.2	Technische Daten Ventile RK(-BF)	14
3.4	RB1550(-BK) Dreiwege-/Durchgangsventil mit Stellantrieb	16
3.4.1	Typen	16
3.4.2	Technische Daten Ventile RB(-BK)	17
3.5	RF1550/65K(-BF) Dreiwege-/Durchgangsventil mit Stellantrieb	19
3.5.1	Typen	19
3.5.2	Technische Daten Ventile RF(-BF)	20
3.6	RGD1540 Durchgangsventil mit Stellantrieb	22
3.6.1	Typen	22
3.6.2	Technische Daten Ventile RGD	22
3.7	RWG1540 Dreiwegeventil mit Stellantrieb	24
3.7.1	Typen	24
3.7.2	Technische Daten Ventile RWG	24
3.8	RGDE2550 Durchgangsventil mit Stellantrieb	26
3.8.1	Typen	26
3.8.2	Technische Daten Ventile RGDE2550	26

3.9	Ventilschnittbilder mit Durchflussrichtungen
4	Lieferumfang, Transport und Lagerung
5	Ventilmontage
5.1	Stellantrieb auf ein Ventil montieren
6	Antrieb anschließen und in Betrieb nehmen
6.1	Anschlussbilder
6.2	Elektrischer Anschluss
6.3	Inbetriebnahme
6.3.1	Inbetriebnahmeschritte
6.3.2	Status der LED Anzeigen
6.4	Stellantriebsfunktionen
6.5	Prioritäten der Rückmeldung der Betriebsarten
7	Instandhaltung
8	Fehler und Abhilfemaßnahmen
9	Instandsetzung
10	Außerbetriebnahme, Demontage und Entsorgung
10.1	Stellantrieb außer Betrieb nehmen und demontieren
10.2	Ventil demontieren
10.3	Entsorgungshinweis
11	Ansprechpartner
12	Konformitätserklärung
13	Index

1 Hinweise zu dieser Betriebsanleitung

HINWEIS

Wenn Fragen auftreten, die Sie nicht mithilfe dieser Betriebsanleitung klären können, holen Sie weitere Informationen bei Ihrem Kieback&Peter-Ansprechpartner ein.

1.1 Gültigkeit der Betriebsanleitung

Diese Betriebsanleitung ist ein Bestandteil des MF100-SR und MF100-SR-E Stellantriebes mit Notstellfunktion für Durchgangs-/Dreiwegeventile der Baureihen RK/RB/RF/RGD/RWG/RGDE und ausschließlich für diesen Stellantrieb mit Notstellfunktion und diese Ventile gültig.

Für eine bessere Lesbarkeit wird der MF100-SR und MF100-SR-E Stellantrieb mit Notstellfuntion im weiteren Text als "Stellantrieb" bezeichnet. Die Durchgangs-/Dreiwegeventile der Baureihen RK/RB/RF/RGD/RWG/RGDE werden im Text als "Ventil" benannt.

1.2 Darstellungsmittel

HINWEIS

Wichtige Informationen finden Sie als Hinweise.

In der Anleitung finden Sie folgende Darstellungsmittel:

- Listenpunkt
- ► Handlungsschritt oder Maßnahme zur Vermeidung der Gefahr

2 Sicherheit

WICHTIG

VOR GEBRAUCH SORGFÄLTIG LESEN AUFBEWAHREN FÜR SPÄTERES NACHLESEN

2.1 Erklärung von Sicherheits- und Warnhinweisen

Die grundlegenden Sicherheitshinweise umfassen Anweisungen, die grundsätzlich für den sicheren Gebrauch oder für die Einhaltung des sicheren Zustands des Stellantriebs mit Ventil gelten.

Die handlungsbezogenen Warnhinweise warnen vor Restgefahren und stehen vor einem gefährlichen Handlungsschritt.

Darstellung und Aufbau von Warnhinweisen

Die Warnhinweise sind handlungsbezogen und wie folgt aufgebaut.

ACHTUNG

Art und Quelle der Gefahr!

Mögliche Folgen, wenn die Gefahr eintritt bzw. der Warnhinweis nicht beachtet wird.

Maßnahmen zur Abwendung der Gefahr.

Warnhinweise sind hinsichtlich der Schwere der Gefahr abgestuft. Nachfolgend sind die Gefahrenstufen mit den dazugehörigen Signalwörtern und Warnsymbolen erläutert:

WARNUNG

Kennzeichnet eine Gefährdung mit mittlerem Risiko, die **Tod oder schwere Körperverletzung** zur Folge haben kann, wenn sie nicht vermieden wird.

VORSICHT

Kennzeichnet eine Gefährdung mit geringem Risiko, die **leichte oder mittlere Körperverletzung** zur Folge haben kann, wenn sie nicht vermieden wird.

ACHTUNG

Kennzeichnet eine Gefährdung, die **Sachschäden oder Fehlfunktionen** zur Folge haben kann, wenn sie nicht vermieden wird.

2.2 Grundlegende Sicherheitshinweise

Die Sicherheit am Arbeitsplatz hängt von der Aufmerksamkeit, Vorsorge und Vernunft aller beteiligter Personen ab. Um Schäden zu vermeiden, lesen und befolgen Sie die folgenden Sicherheitshinweise, die Sicherheitshinweise in der Nutzungsdokumentation der Komponenten sowie die jeweils gültigen örtlichen Vorschriften.

Scharfe Kanten und Ecken

Hautabschürfungen und Schnittverletzungen durch scharfe Kanten und Ecken z. B. am Gusskörper und an den Außengewinden der Ventile, Einzelteilen der Stellantriebe sind möglich.

- Vorsichtig vorgehen.
- Schutzhandschuhe tragen.

Umfallen, Herabfallen, Herausschleudern von Teilen

Schwere Verletzungen und Sachschäden durch:

- Umfallen oder Herabfallen von Ventil- oder Antriebsteilen,
- Wegschleudern von Teilen bei unzulässigen Druckerhöhungen (Bersten von Bauteilen),
- unzulässigen Druckabfall (z. B. bei Spanneinrichtungen).
- Schutzbereich gegen Betreten Unbefugter sichern.
- ► Teile gegen Umfallen und Herabfallen sichern.
- Maximalen Betriebsdruck des Ventils nicht überschreiten.

Flüssigkeiten unter Druck

Schwere Verbrennungen und Flüssigkeitsstrahl-Verletzungen durch fehlerhafte Anschlüsse sind möglich.

- Maximalen Betriebsdruck des Ventils nicht überschreiten.
- Nach Befüllen der Anlage alle Anschlüsse prüfen.
- Schutzbereich gegen Betreten Unbefugter sichern.

Heiße bzw. kalte Oberflächen

Schwere Verbrennungen bzw. Unterkühlungen beim Kontakt mit heißen bzw. kalten Oberflächen an Ventilen und Rohrleitungen sind möglich.

Vor dem Beginn der Arbeiten abwarten, bis die Temperatur der Rohrleitungen und Ventile in etwa 5 bis 35 °C entspricht.

Störungen des Bewegungsapparates

Schwere Störungen des Bewegungsapparates (z. B. Rückenschäden) durch ungesunde Körperhaltung oder besondere Anstrengung (z. B. Gewichtsbelastung) sind möglich.

Vorsichtig vorgehen.

2.3 Verantwortung des Betreibers

Der Stellantrieb mit Ventil darf nur in einem technisch ordnungsgemäßen und sicheren Zustand betrieben werden. Der Betreiber hat folgende Punkte zu beachten:

- Stellen Sie sicher, dass die Betriebsanleitung allen Personen zur Verfügung steht, die Arbeiten am Stellantrieb mit Ventil durchführen.
- Stellen Sie sicher, dass alle Personen die Betriebsanleitung vor der Arbeit am Stellantrieb und Ventil gelesen und verstanden haben.
- Stellen Sie die am Montageort geforderten Umgebungsbedingungen und Abstände sicher.
- Stellen Sie sicher, dass die Montage, Installation und Inbetriebnahme entsprechend der Aufgaben nur von einem Monteur oder einer Elektrofachkraft ausgeführt werden.
- Informieren Sie bei Beschädigung von Stellantrieb und/oder Ventil Ihren Kieback&Peter-Ansprechpartner.
- Stellen Sie sicher, dass das Personal die landesspezifisch vorgeschriebene Persönliche Schutzausrüstung (PSA) erhält und jederzeit verwendet.

2.4 Qualifikationen des Personals

Monteur

Als Monteur gilt, wer sich mit den Heizungs-, Lüftungs- und Klimaanlagen auskennt. Aufgrund seiner fachlichen Ausbildung, ausreichender Kenntnisse und Erfahrungen ist er mit dem beschriebenen Stellantrieb und Ventil vertraut. Der Monteur kennt die einschlägigen Bestimmungen, kann übertragene Arbeiten beurteilen und mögliche Gefahren erkennen.

Elektrofachkraft

Als Elektrofachkraft gilt, wer mit dem beschriebenen Stellantrieb vertraut ist. Aufgrund seiner fachlichen Ausbildung, Kenntnisse und Erfahrungen beherrscht er die Aufgabengebiete Kabel-, Leitungen und Verlegesysteme sehr gut und hat gute Kenntnisse in den Bereichen Elektrotechnik und elektrische Maschinen und Antriebe. Die Elektrofachkraft kennt die einschlägigen Bestimmungen, kann übertragene Arbeiten beurteilen und mögliche Gefahren erkennen.

Wer darf welche Aufgaben ausführen?

Tätigkeit	Monteur	Elektrofachkraft
Montage		
Ventil montieren	Х	
Stellantrieb montieren	Х	
Inbetriebnahme		
Elektrisch anschließen		х
Antriebsfunktionen anpassen		х
Fehler und Abhilfemaßnahmer	n je nach Fehlerart	
Fehlersuche und -behebung	Х	Х
Außerbetriebnahme, Demonta	ge und Entsorgung	
Stellantrieb außer Betrieb nehmen		х
Stellantrieb demontieren	Х	
Ventil demontieren	Х	
Entsorgung	Х	

2.5 Bestimmungsgemäßer Gebrauch

- Der Stellantrieb mit Ventil ist zur Regelung des Durchflusses oder zur feinstufigen Mischung von Flüssigkeiten für Heizungs-, Lüftungs- und Klimaanlagen bestimmt.
- Betreiben Sie den Stellantrieb nur mit einem der vorgegebenen Ventile und dem originalen Ventilzubehör.
- Der Stellantrieb mit Ventil ist ausschließlich für den industriellen und gewerblichen Gebrauch vorgesehen, betreiben Sie den Stellantrieb mit Ventil nicht im privaten Bereich oder Haushalt.
- Betreiben Sie den Stellantrieb mit Ventil ausschließlich in Innenräumen.
- Halten Sie w\u00e4hrend des Betriebs, Transports und der Lagerung die vorgegebenen Umgebungsbedingungen ein.
- Verwenden Sie nur ein geeignetes Betriebsmedium.
- Betreiben Sie den Stellantrieb mit Ventil ausschließlich im Originalzustand. Umbauten am Stellantrieb und/oder Ventil können unvorhergesehene Gefahren zur Folge haben und sind aus diesem Grund nicht erlaubt.

3 Beschreibung

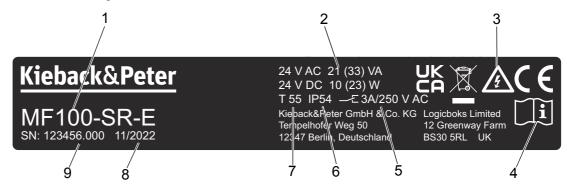
Die Stellantriebe mit Notstellfunktion MF100-SR und MF100-SR-E mit einer Stellkraft von 1000 N dienen zur feinstufigen Hubverstellung von Durchgangs- und Dreiwegeventile der Typen:

- RK15..50/65K(-BF)
- RB15..50(-BK)
- RF15..50/65K(-BF)
- RGD15..40
- RWG15..40
- RGDE25..50

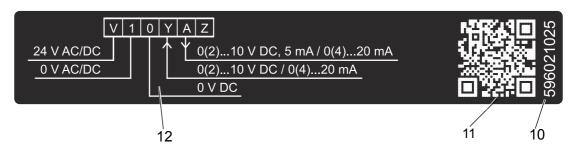
Die Ansteuerung erfolgt mit einem der folgenden Signale:

- stetiges Signal 0(2)..10 V DC bzw. 0(4)..20 mA
- 2-Punktsignal Auf/Zu oder
- 3-Punktsignal Auf/Halt/Zu durch Direktansteuerung mit Betriebsartenschalter

Der Stellantrieb besitzt eine Notstellfunktion, die Ventile je nach verwendetem Ventiltyp, bei Netzausfall mit Federkraft automatisch schließt bzw. öffnet.


Notstellfunktion: Antrieb stromlos ausfahrend

Der Stellantrieb MF100-SR-E hat zusätzlich einen Hilfsschalter mit zwei galvanisch getrennten Wechslern zur wahlweisen Meldung der Ventilstellungen Auf oder Zu.



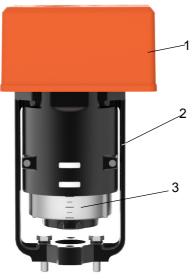
3.1 Identifikation

Die Beschilderung des Stellantriebs befindet sich auf der Traverse.

3-1: Typenschild des Stellantriebs (exemplarische Darstellung)

3-2: Anschlussbild (exemplarische Darstellung)

- 1 Stellantriebstyp
- 2 Elektrische Kenndaten des Stellantriebs
- 3 Kennzeichnung: Entsorgung, Schutzklasse, CE / UKCA
- 4 Verweis auf die Betriebsanleitung bezüglich weitergehender Informationen
- 5 Schaltleistung des Hilfsschalters, nur bei MF100-SR-E
- 6 Schutzart des Stellantriebs
- 7 Temperaturbereich
- 8 Monat/Baujahr
- 9 Seriennummer
- 10 Fertigungsnummer
- 11 Fertigungsbegleitender QR Code
- 12 Anschlussbild


HINWEIS

Die Artikelnummer des Ventils ist nur auf dem Typenschild des Stellantriebs eingetragen, wenn Sie eine vormontierte Stellantrieb-Ventil-Kombination erhalten haben.

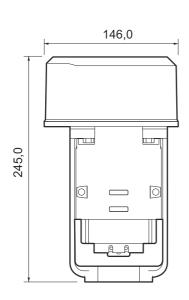
Wichtige ventilspezifische Kenndaten finden Sie auf dem Typenschild des Ventils. Je nach Ventiltyp ist das Typenschild an unterschiedlichen Positionen auf dem Ventilkörper oder -flansch angebracht.

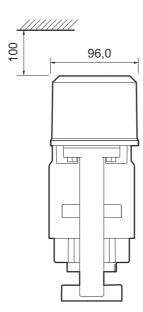
3.2 Stellantrieb

3.2.1 Aufbau

3-3: Aufbau Stellantrieb - Ansicht A

3-4: Aufbau Stellantrieb - Ansicht B


- 1 Haube
- 2 Traverse
- 3 Hubskale
- 4 Haubenschrauben (2x)

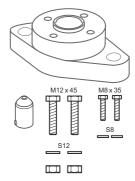

Abdeckung des Stellantriebs

Anzeige der aktuellen Hubposition des Ventils

Befestigung der Haube

3.2.2 Abmessungen

3.2.3 Technische Daten


Nennspannung	24 V AC ± 15 %, 50/60 Hz; 24 V DC ± 15 %
Dimensionierung	33 VA (AC); 23 W (DC)
Einschaltstrom	max. 7 A, < 1 ms, < 0,049 A ² s
Leistungsaufnahme	Ruhemodus: 25 VA (AC); 0,52 W (DC) (abhängig von der Stellposition)
	nominal: 21 VA (AC); 10 W (DC)
Hilfsschalter	nur bei MF100-SR-E
	2 potentialfreie Wechsler, Kontaktbelastung max. 3 A, 250 V AC
Leitungsquerschnitt	min. 0,75 mm²
Ansteuerung	stetig, einstellbar über DIP-Schalter (siehe Seite 38)
	- mit Spannungssignal 0(2)10 V DC; Re = 100 kΩ; invertierbar
	- mit Stromsignal 0(4)20 mA; invertierbar
	2-Punktsignal (Auf/Zu)
	3-Punktsignal (Auf/Halt/Zu) durch Direktansteuerung mit Betriebsartenschalter
Stellungsrückmeldung	einstellbar über DIP-Schalter (siehe Seite 38)
	- Spannungssignal 0(2)10 V DC; 5 mA; invertierbar;
	ca. 12,5 V Signal bei Störung
	- Stromsignal 0(4)20 mA; Ri = 0,5 kΩ; invertierbar;
	ca. 0 mA Signal bei Störung
Hub	max. 20 mm, automatische Hubanpassung durch Initialisierung
Stellgeschwindigkeit	ca. 1 s/mm (Werkseinstellung)
	ca. 9 s/mm
Notstellgeschwindigkeit	ca. 1 s/mm
Notstellfunktion	Antrieb stromlos ausfahrend, mittels Rückstellfeder
Stellkraft	nominal 1000 N
Umgebungstemp.	055°C
Umgebungsfeuchte	095 % r.F., nicht kondensierend
Schutzart	IP54
Schutzklasse	MF100-SR: III nach EN 60730
	MF100-SR-E: I nach EN 60730
Einbaulage	senkrecht über dem Ventil, bis zur waagerechten Lage
Wartung	wartungsfrei
Gewicht	MF100-SR: 2,80 kg, MF100-SR-E: 2,81 kg

3.2.4 Zubehör

Z189 Anbausatz für RGDE.. bis DN50

Bei Werkslieferung von Ventil-Antriebskombinationen ist der Anbausatz Z189 vormontiert.

Weitere Beschreibungen der Montage sind in dem Montagehinweis 3.10-40.299-99 angegeben (Beilage zum Zubehör Z189).

3.3 RK15..RK50/65K(-BF) Dreiwege-/Durchgangsventil mit Stellantrieb

Anwendung

Die Grauguss-Dreiwegeventile und Durchgangsventile mit Stellantrieb dienen zur feinstufigen Mischung bzw. zur Mengenregulierung von Flüssigkeiten.

Mit Blindflansch BF am Tor B werden die Ventile als Durchgangsventile eingesetzt.

Der Stellantrieb besitzt eine Notstellfunktion, die das Ventiltor B bei Netzausfall automatisch schließt = gerader Durchgang $A \rightarrow AB$ stromlos offen.

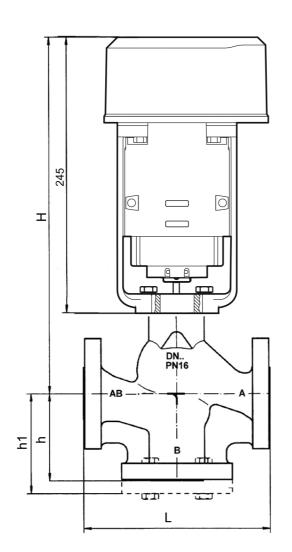
3.3.1 **Typen**

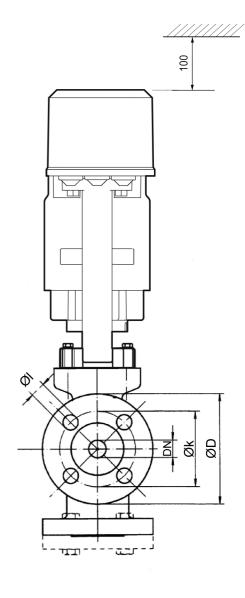
Grauguss-Dreiwegeventil RK15..50/RK65K für Stellantrieb MF100-SR oder MF100-SR-E, für Wasser bis 120° C, 6 bar

Тур	DN	PN	kvs	∆p (bar)	Gewicht (kg)	Notellfunk- tion
RK15/0,63	15	6	0,63	6	2,2	Tor A: Auf
RK15/1,0	15	6	1,0	6	2,2	Tor A: Auf
RK15/1,6	15	6	1,6	6	2,2	Tor A: Auf
RK15/2,5	15	6	2,5	6	2,2	Tor A: Auf
RK15	15	6	4,0	6	2,2	Tor A: Auf
RK20	20	6	6,3	6	3,0	Tor A: Auf
RK25	25	6	10	6	3,7	Tor A: Auf
RK32	32	6	16	6	5,6	Tor A: Auf
RK40	40	6	25	5,5	7,0	Tor A: Auf
RK50	50	6	40	3,5	8,4	Tor A: Auf
RK65K	65	6	63	1,5	14,7	Tor A: Auf

Grauguss-Durchgangsventil RK15..50/RK65K für Stellantrieb MF100-SR oder MF100-SR-E, für Wasser bis 120°C, 6 bar

Тур	DN	PN	kvs	∆p (bar)	Gewicht (kg)	Notellfunk- tion
RK15/0,6-BF	15	6	0,63	6	2,8	Ventil: Auf
RK15/1,0-BF	15	6	1,0	6	2,8	Ventil: Auf
RK15/1,6-BF	15	6	1,6	6	2,8	Ventil: Auf
RK15/2,5-BF	15	6	2,5	6	2,8	Ventil: Auf
RK15-BF	15	6	4,0	6	2,8	Ventil: Auf
RK20-BF	20	6	6,3	6	3,9	Ventil: Auf
RK25-BF	25	6	10	6	4,8	Ventil: Auf
RK32-BF	32	6	16	6	7,1	Ventil: Auf
RK40-BF	40	6	25	5,5	8,8	Ventil: Auf
RK50-BF	50	6	40	3,5	10,5	Ventil: Auf
RK65K-BF	65	6	63	1,5	17,9	Ventil: Auf




3.3.2 Technische Daten Ventile RK..(-BF)

Nennweite	DN1565	DN1565					
Druckstufe	PN 6	PN 6					
Anschluss	Flansche nach EN	l 1092-2 Typ 21					
Kennlinie	RK	Tore A \rightarrow AB = gleichprozentig					
		Tore B \rightarrow AB = linear					
	RKBF	Tore A → AB = gleichprozentig					
Stellhub	RK1550(-BF): 14 mm						
	RK65K(-BF): 20 m	nm					
Leckrate	nach EN 1349, Le	ckage-Klasse VI					
Mediumtemperatur	0130 °C (max. 12	20 °C bei 6 bar)					
Gehäuse	Grauguss EN-JL1	040					
Sitzring	CrNi Stahl 1.4021						
Kegel	Messing CW614N						
Ventilspindel	CrMo-Stahl 1.4122	CrMo-Stahl 1.4122					
Spindelabdichtung	O-Ringe mit Führu	ıngsbuchsen EPDM/PTFE, wartungsfrei					

Abmessungen

DN	L	Ø D	Øk	ØΙ	Н	h	h1 (RKBF)			
15	130	80	55	4x Ø 18	287	65	79			
20	150	90	65	4x Ø 18	292	70	84			
25	160	100	75	4x Ø 18	297	75	91			
32	180	120	90	4x Ø 18	300	95	111			
40	200	130	100	4x Ø 18	303	100	116			
50	230	140	110	4x Ø 18	303	100	118			
65	290	160	160	4x Ø 18	352	120	144			
	Maße	Maße L bis h1 in mm								

3.4 RB15..50(-BK) Dreiwege-/Durchgangsventil mit Stellantrieb

Anwendung

Die Rotguss-Dreiwegeventile und Durchgangsventile mit Stellantrieb dienen zur feinstufigen Mischung bzw. zur Mengenregulierung von Flüssigkeiten.

Mit Blindkappe BK am Tor B werden die Ventile als Durchgangsventile eingesetzt.

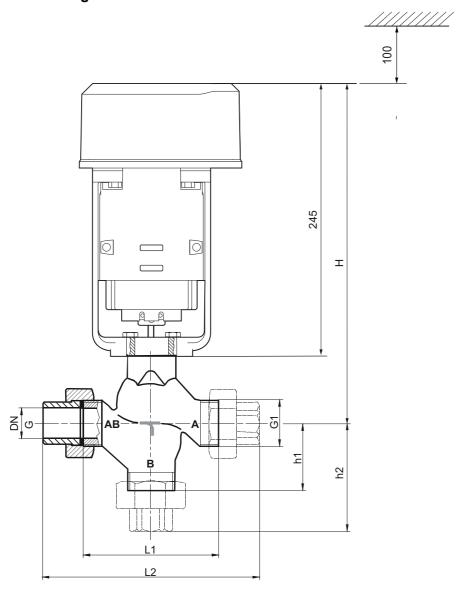
Der Stellantrieb besitzt eine Notstellfunktion, die das Ventiltor B bei Netzausfall automatisch schließt = gerader Durchgang $A \rightarrow AB$ stromlos offen.

3.4.1 **Typen**

Rotguss-Dreiwegeventil RB15..50 mit Stellantrieb MF100-SR oder MF100-SR-E, für Wasser bis 120°C, 16 bar

Тур	DN	PN	kvs	∆p (bar)	Gewicht (kg)	Notellfunk- tion
RB15/0,63	15	16	0,63	16	0,9	Tor A: Auf
RB15/1,0	15	16	1,0	16	0,9	Tor A: Auf
RB15/1,6	15	16	1,6	16	0,9	Tor A: Auf
RB15/2,5	15	16	2,5	16	0,9	Tor A: Auf
RB15	15	16	4,0	16	0,9	Tor A: Auf
RB20	20	16	6,3	16	1,4	Tor A: Auf
RB25	25	16	10	15	1,7	Tor A: Auf
RB32	32	16	16	9	3,4	Tor A: Auf
RB40	40	16	25	5,5	4,0	Tor A: Auf
RB50	50	16	40	3,5	5,6	Tor A: Auf

Rotguss-Durchgangsventil RB15..50-BK für Stellantrieb MF100-SR oder MF100-SR-E, für Wasser bis 120°C, 16 bar


Тур	DN	PN	kvs	∆p (bar)	Gewicht (kg)	Notellfunk- tion
RB15/0,63-BK	15	16	0,63	16	0,9	Ventil: Auf
RB15/1,0-BK	15	16	1,0	16	0,9	Ventil: Auf
RB15/1,6-BK	15	16	1,6	16	0,9	Ventil: Auf
RB15/2,5-BK	15	16	2,5	16	0,9	Ventil: Auf
RB15-BK	15	16	4,0	16	0,9	Ventil: Auf
RB20-BK	20	16	6,3	16	1,4	Ventil: Auf
RB25-BK	25	16	10	15	1,7	Ventil: Auf
RB32-BK	32	16	16	9	3,4	Ventil: Auf
RB40-BK	40	16	25	5,5	4,0	Ventil: Auf
RB50-BK	50	16	40	3,5	5,6	Ventil: Auf

3.4.2 Technische Daten Ventile RB..(-BK)

Nennweite	DN1550	DN1550					
Druckstufe	PN 16	PN 16					
Anschluss	Außengew nach DIN I	inde nach DIN ISO 228/1 mit Innengewindeanschlussteilen SO 7/1					
Kennlinie	RB Tore A \rightarrow AB = gleichprozentig						
		Tore B \rightarrow AB = linear					
	RBBF Tore A \rightarrow AB = gleichprozentig						
Stellhub	RB1520(-BK): 12 mm						
	RB2550(-BK): 14 mm						
Leckrate	EN 1349 - Sitz-Leckage VI G 1 (dichtschließend)						
Mediumtemperatur	0150 °C (max. 120 °C bei 16 bar)					
	ab 130 °C	Antriebsposition nur waagerecht zulässig					
Gehäuse	Rotguss R	g-5 / CC491K					
Kegel	Messing C	W614N					
Ventilspindel	CrMo-Stah	l 1.4122					
Spindelabdichtung	O-Ringe EPDM-Peroxyd, wartungsfrei						
Rohranschlüsse	Innengewindeanschlussteile und						
	Überwurfmuttern Temperguss GTW, blau chromatiert						
Blindkappe für RBBK	Überwurfmutter Temperguss GTW, blau chromatiert;						
	Dichtungss	scheibe Stahl					

Abmessungen

Ausführung RB .. -BK (Durchgangsventil) mit Blindkappe am Tor B

DN	L1	L2	h1	h2	Н	G	G1
15	62	114	40	66	282	1/2	1
20	75	127	41	67	285	3/4	1 1/4
25	80	138	45	74	288	1	1 1/2
32	120	184	55	89	297	1 1/4	2
40	130	198	60	94	300	1 1/2	2 1/4
50	150	222	65	101	300	2	2 3/4
	Maße	L1 bis H i	n mm, Ar	schlussge	winde G und	G1 in Zoll	1

3.5 RF15..50/65K(-BF) Dreiwege-/Durchgangsventil mit Stellantrieb

Anwendung

Die Grauguss-Dreiwegeventile und Durchgangsventile mit Stellantrieb dienen zur feinstufigen Mischung bzw. zur Mengenregulierung von Flüssigkeiten.

Mit Blindkappe BF am Tor B werden die Ventile als Durchgangsventile eingesetzt.

Der Stellantrieb besitzt eine Notstellfunktion, die das Ventiltor B bei Netzausfall automatisch schließt = gerader Durchgang $A \rightarrow AB$ stromlos offen.

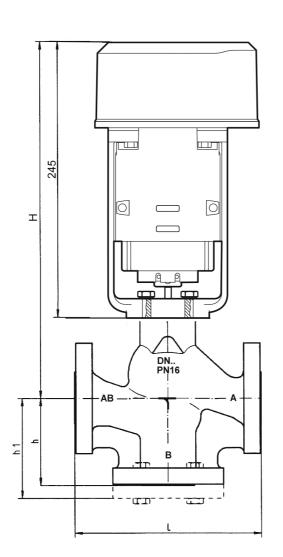
3.5.1 Typen

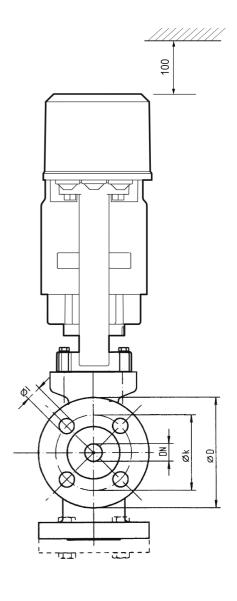
Grauguss-Dreiwegeventil RF15..50/RF65K für Stellantrieb MF100-SR oder MF100-SR-E, für Wasser bis 120 C, 16 bar

Тур	DN	PN	kvs	∆p (bar)	Gewicht (kg)	Notellfunk- tion
RF15/0,63	15	16	0,63	16	3,1	Tor A: Auf
RF15/1,0	15	16	1,0	16	3,1	Tor A: Auf
RF15/1,6	15	16	1,6	16	3,1	Tor A: Auf
RF15/2,5	15	16	2,5	16	3,1	Tor A: Auf
RF15	15	16	4,0	16	3,1	Tor A: Auf
RF20	20	16	6,3	16	4,0	Tor A: Auf
RF25	25	16	10	15	5,0	Tor A: Auf
RF32	32	16	16	9,5	7,6	Tor A: Auf
RF40	40	16	25	6	9,1	Tor A: Auf
RF50	50	16	40	3,5	11,6	Tor A: Auf
RF65K	65	16	63	2	19,1	Tor A: Auf

Grauguss-Durchgangsventil RF15..50/RF65K-BF für Stellantrieb MF100-SR oder MF100-SR-E, für Wasser bis 120 C, 16 bar

Тур	DN	PN	kvs	∆p (bar)	Gewicht (kg)	Notellfunk- tion
RF15/0,63-BF	15	16	0,63	16	4,1	Ventil: Auf
RF15/1,0-BF	15	16	1,0	16	4,1	Ventil: Auf
RF15/1,6-BF	15	16	1,6	16	4,1	Ventil: Auf
RF15/2,5-BF	15	16	2,5	16	4,1	Ventil: Auf
RF15-BF	15	16	4,0	16	4,1	Ventil: Auf
RF20-BF	20	16	6,3	16	5,3	Ventil: Auf
RF25-BF	25	16	10	15	6,6	Ventil: Auf
RF32-BF	32	16	16	9,5	10,0	Ventil: Auf
RF40-BF	40	16	25	6	11,8	Ventil: Auf
RF50-BF	50	16	40	3,5	13,3	Ventil: Auf
RF65K-BF	65	16	63	2	24,8	Ventil: Auf




3.5.2 Technische Daten Ventile RF..(-BF)

Nennweite	DN156	DN1565			
Druckstufe	PN 16	PN 16			
CE-Zeichen	CE-Zeic	hen für RF65K			
Anschluss	Flansch	e EN 1092-2 Typ 21			
Kennlinie	RF	Tore A → AB = gleichprozentig			
		Tore B → AB = linear			
	RFBF	Tore A → AB = gleichprozentig			
Stellhub	RF155	0(-BF): 14 mm			
	RF65K(-BF): 20 mm			
Leckrate	nach EN	l 1349, Leckage-Klasse VI			
Mediumtemperatur	0130 °	C (max. 120 °C bei 16 bar)			
Gehäuse	Graugus	Grauguss EN-JL1040			
Kegel	Messing	Messing CW614N			
Ventilspindel	CrMo-St	CrMo-Stahl 1.4122			
Spindelabdichtung	O-Ringe	O-Ringe EPDM, wartungsfrei			

Abmessungen

DN	L	ØD	Øk	ØΙ	Н	h	h1 (RFBF)
15	130	95	65	4x Ø 14	287	65	79
20	150	105	75	4x Ø 14	292	70	84
25	160	115	85	4x Ø 14	297	75	91
32	180	140	100	4x Ø 14	300	95	111
40	200	150	110	4x Ø 14	303	100	116
50	230	165	125	4x Ø 14	303	100	118
65	290	185	145	4x Ø 14	352	120	150
	Maße L bis h1 in mm, Flansche nach DIN, PN16						

3.6 RGD15..40 Durchgangsventil mit Stellantrieb

Anwendung

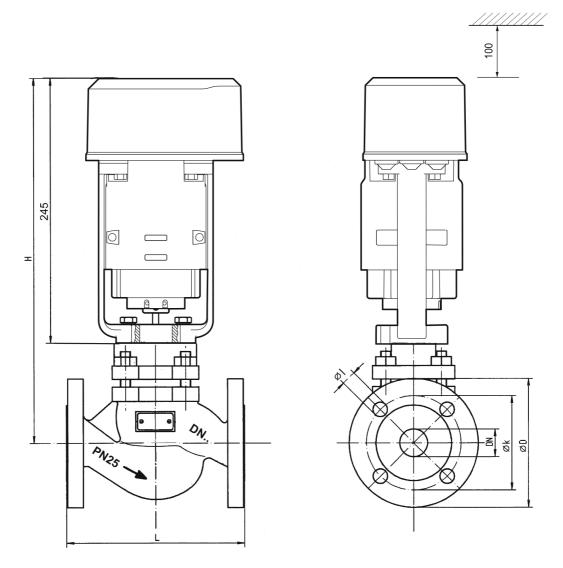
Das Sphäroguss-Dreiwegeventil mit Stellantrieb dient zur feinstufigen Mengenregelung von Flüssigkeiten und Dämpfen.

Der Stellantrieb besitzt eine Notstellfunktion, die das Ventil bei Netzausfall mit Federkraft automatisch schließt.

3.6.1 **Typen**

Sphäroguss-Durchgangsventil RGD15..40 für Stellantrieb MF100-SR oder MF100-SR-E, für Wasser bis 120°C, 25 bar sowie für Heißwasser und Dampf bis 200°C, 20 bar

Тур	DN	PN	kvs	∆p (bar)	Gewicht (kg)	Notellfunk- tion
RGD15/0,4	15	25	0,4	25	3,2	Ventil: Zu
RGD15/0,63	15	25	0,63	25	3,2	Ventil: Zu
RGD15/1,0	15	25	1,0	20,5	3,2	Ventil: Zu
RGD15/1,6	15	25	1,6	20,5	3,2	Ventil: Zu
RGD15/2,5	15	25	2,5	20,5	3,2	Ventil: Zu
RGD15	15	25	4,0	20,5	3,2	Ventil: Zu
RGD25/6,3	25	25	6,3	11,8	4,8	Ventil: Zu
RGD25	25	25	10	11,8	4,8	Ventil: Zu
RGD32	32	25	16	8,6	6,3	Ventil: Zu
RGD40	40	25	25	4,4	8,7	Ventil: Zu



3.6.2 Technische Daten Ventile RGD..

Nennweite	DN1540				
Druckstufe	PN 25				
CE-Kennzeichen	CE-Zeichen	ab DN32, benannte Stelle: 0525			
Anschluss	Flansche DI	N 2501-1, PN25, Dichtleiste Form C DIN 2526			
Kennlinie	gleichprozer	ntig			
Stellhub	15 mm				
Leckrate	nach EN 134	19, Leckage-Klasse VI			
Mediumtemperatur	0200 °C	0200 °C			
Gehäuse	Sphäroguss	GGG-40.3			
Sitzring	Nirostahl 1.4	4021			
Kegel	DN1532	Nirostahl 1.4571			
	DN40	Nirostahl 1.4021			
Ventilspindel	Nirostahl 1.4571				
Spindelabdichtung	Dachmanscl	Dachmanschetten Univerdit mit PTFE-Buchse, wartungsfrei			

Abmessungen

DN	L	Ø D	ØK	Ø١	Н	
15	130	95	65	4xØ14	330	
25	160	115	85	4xØ14	338	
32	180	140	100	4xØ18	338	
40	200	150	110	4xØ18	349	
	Maße L bis H in mm					

3.7 RWG15..40 Dreiwegeventil mit Stellantrieb

Anwendung

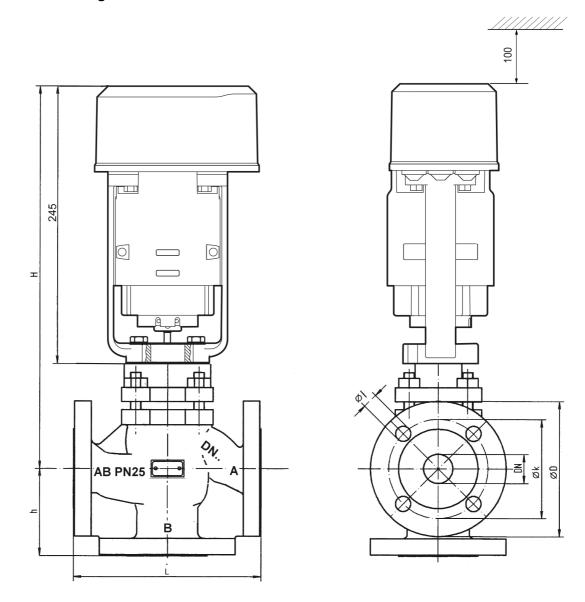
Das Sphäroguss-Dreiwegeventil mit Stellantrieb dient zur feinstufigen Mengenregelung von Flüssigkeiten und Dämpfen.

Der Stellantrieb besitzt eine Notstellfunktion, die das Ventiltor B bei Netzausfall automatisch schließt = gerader Durchgang $A \rightarrow AB$ stromlos offen.

3.7.1 Typen

Sphäroguss-Dreiwegeventil RWG15..40 für Stellantrieb MF100-SR oder MF100-SR-E, für Wasser bis 120°C, 25 bar sowie für Heißwasser und Dampf bis 200°C, 20 bar

Тур	DN	PN	kvs	∆p (bar)	Gewicht (kg)	Notellfunk- tion
RWG15/1,0	15	25	1	20,5	5,1	Ventil: Zu
RWG15/1,6	15	25	1,6	20,5	5,1	Ventil: Zu
RWG15/2,5	15	25	2,5	20,5	5,1	Ventil: Zu
RWG15	15	25	4	20,5	5,1	Ventil: Zu
RWG25/6,3	25	25	6,3	11,8	7,1	Ventil: Zu
RWG25	25	25	10	11,8	7,1	Ventil: Zu
RWG32	32	25	16	8,6	9,7	Ventil: Zu
RWG40	40	25	25	4,4	13,0	Ventil: Zu



3.7.2 Technische Daten Ventile RWG..

Nennweite	DN1540					
Druckstufe	PN 25	PN 25				
CE-Kennzeichen	CE-Zeiche	n ab DN 32, benannte Stelle: 0525				
Anschluss	Flansche D	DIN 2501-1, PN25, Dichtleiste Form C DIN 2526				
Kennlinie	gleichproze	entig				
Stellhub	15 mm	15 mm				
Leckrate	nach EN 13	nach EN 1349, Leckage-Klasse VI				
Mediumtemperatur	0200 °C	0200 °C				
Gehäuse	Sphärogus	s GGG-40.3				
Sitzring	Nirostahl 1	.4021				
Kegel	DN1532	Nirostahl 1.4571				
	DN40	Nirostahl 1.4021				
Ventilspindel	Nirostahl 1.4571					
Spindelabdichtung	Dachmanschetten Univerdit mit PTFE-Buchse, wartungsfrei					

Abmessungen

DN	L	ØD	Øk	Ø١	h	Н
15	130	95	65	4 x Ø14	65	338
25	160	115	85	4 x Ø14	75	342
32	180	140	100	4 x Ø18	80	368
40	200	150	110	4 x Ø18	90	377,5
	Maße L bis H in mm, Flansche nach DIN, PN25					

3.8 RGDE25..50 Durchgangsventil mit Stellantrieb

Anwendung

Das Sphäroguss-Durchgangsventil mit Stellantrieb dient zur feinstufigen Mengenregelung von Flüssigkeiten und Dämpfen.

Der Stellantrieb besitzt eine Notstellfunktion, die das Ventil bei Netzausfall mit Federkraft automatisch schließt.

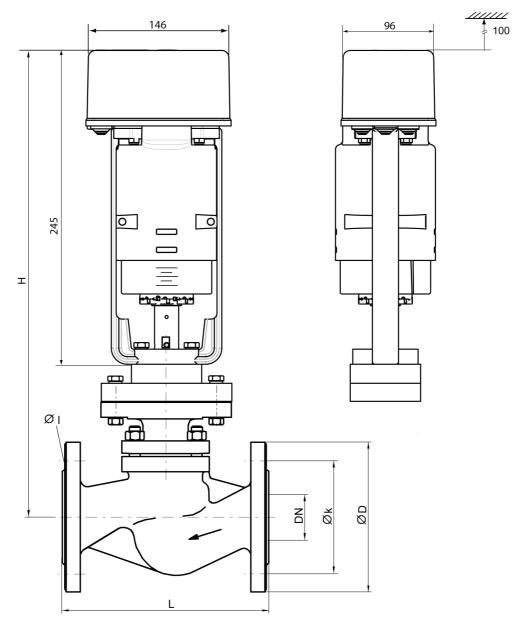
3.8.1 **Typen**

Druckentlastetes Sphäroguss-Durchgangsventil RGDE25..50 für Stellantrieb MF100-SR oder MF100-SR-E, für Wasser bis 120°C, 25 bar sowie für Heißwasser und Dampf bis 200°C, 20 bar.

Тур	DN	PN	kvs	∆p (bar)		Notellfunk- tion
RGDE25	25	25	10	20	7,0	Ventil Zu
RGDE32	32	25	16	20	9,0	Ventil Zu
RGDE40	40	25	25	20	12,0	Ventil Zu
RGDE50	50	25	40	16	15,0	Ventil Zu

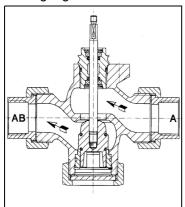
HINWEIS

Anbausatz Z189 erforderlich (siehe Zubehör Seite 12).

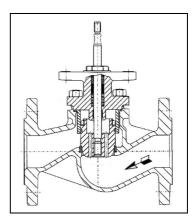

Bei Werkslieferung von Ventil-Antriebskombinationen ist der Anbausatz Z189 vormontiert.

3.8.2 Technische Daten Ventile RGDE25..50

Nennweite	DN2550
Druckstufe	PN 25
CE-Zeichen	CE-Zeichen, benannte Stelle 0525
Anschluss	Flansche DIN 2501-1, PN 25
Kennlinie	gleichprozentig
Stellhub	20 mm
Leckrate	nach EN 1349, Leckage-Klasse VI
Mediumtemperatur	0200 °C
Gehäuse	Späroguss GGG-40.3
Sitzring	CrNi-Stahl 1.4021
Kegel	CrNi-Stahl 1.4021, metallisch dichtend,
	druckentlastende Kegelabdichtung
	aus PTFE mit Edelstahleinlage (max. 200°C)
Ventilspindel	CrMo-Stahl 1.4571
Spindelabdichtung	Dachmanschetten PTFE, wartungsfrei

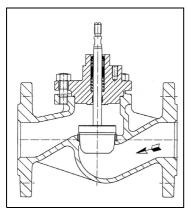

Abmessungen



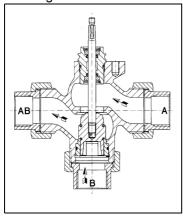

DN	L	Ø D	Øk	Ø١	Н
25	160	115	85	4x Ø 14	398,5
32	180	140	100	4x Ø 18	398,5
40	200	150	110	4x Ø 18	405,5
50	230	165	125	4x Ø 18	411,5
	Maße L bis H in mm, Flansche nach DIN, PN 25				

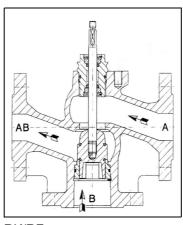
3.9 Ventilschnittbilder mit Durchflussrichtungen

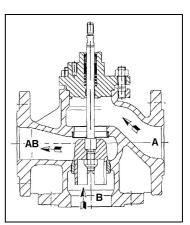
Durchgangsventile



RB..-BK


RK/RF..-BF


RGDE..



RGD..

Dreiwegeventile

RB..

RK/RF..

RWG..

4 Lieferumfang, Transport und Lagerung

Lieferumfang

Der Stellantrieb kann in unterschiedlichen Zusammenstellungen mit Ventil und Ventilzubehör oder als Einzelprodukt ausgeliefert werden.

Zum maximalen Lieferumfang gehören:

- MF100-SR oder MF100-SR-E Stellantrieb
- eine Verschraubung M16x1,5
- eine Verschraubung M20x1,5 nur bei MF100-SR-E
- Ein Durchgangsventil RB15..50-BK, RF15..50-BF, RF65K-BF, RK15..50-BF, RK65K-BF, RGD15..40, RGDE25..50 oder ein Dreiwegeventil RB15..50, RF15..50, RF65K, RK15..50, RK65K, RWG15..40.
- Betriebsanleitung MF100-SR und MF100-SR-E Stellantrieb für die oben genannten Ventiltypen
- Montagehinweis MF100-SR oder MF100-SR-E

Auspacken

- Vorsichtig auspacken.
- Auf Beschädigungen prüfen.
- Beschädigte Lieferung nicht verwenden und Ihren Kieback&Peter-Ansprechpartner kontaktieren.
- Verpackungsmaterial nach örtlichen Bestimmungen entsorgen.

Wiederverpacken

- ▶ Geeignete Verpackung verwenden. Die Verpackung darf weder zu groß noch zu klein sein.
- Füllmaterial zum Schutz vor Verrutschen in die Verpackung einfüllen.

Transport

- ▶ Stellantrieb, Ventil inkl. Ventilzubehör in einer geeigneten Verpackung transportieren.
- ▶ Stöße und mechanische Beschädigungen vermeiden.
- Das Produkt nicht werfen oder fallen lassen.
- ▶ Die vorgegebene Umgebungstemperatur von -25..+60 °C und Umgebungsfeuchte von 0..85 % r. F., nicht kondensierend einhalten.

Lagerung

- Stellantrieb, Ventil inkl. Ventilzubehör nur in Innenräumen lagern.
- Stöße und mechanische Beschädigungen vermeiden.
- ▶ Die vorgegebene Umgebungstemperatur von -20..+60 °C und Umgebungsfeuchte von 0..85 % r. F., nicht kondensierend einhalten.

5 Ventilmontage

ACHTUNG

Die Montage der Armatur darf nur durch qualifiziertes Fachpersonal durchgeführt werden! Neben den allgemeingültigen Montagerichtlinien sind folgende Punkte zu beachten:

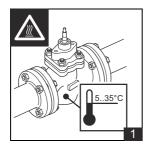
- Die Ventiltore sind zum Schutz vor Verunreinigungen mit Schutzkappen versehen, die vor der Ventilmontage zu entfernen sind.
- Das Rohrleitungssystem und der Armatureninnenraum müssen frei von Fremdkörpern sein. Bei verschmutzten Medien sind Schmutzfänger vor den Ventilen einzusetzen.
- Verspannungen zwischen Armatur- und Rohrleitungsanschluss dürfen nicht auftreten.
- Nur genau passende Flanschdichtungen verwenden und an den Ventilflanschen zentrisch einsetzen.
- Um Wirbelbildungen im Ventilkörper zu vermeiden, sollte dieser in einem geraden Rohrstrang eingesetzt werden. Als Maß zwischen Ventilflansch und Krümmer oder dergleichen dient der Richtwert 10 x Nennweite.
- Der Einbauort ist so zu wählen, dass die Umgebungstemperatur am Stellantrieb 0..+55 °C eingehalten wird.
- Bei der Montage sind die zulässige max. Druckdifferenz ∆p und die angegebene Durchflussrichtung zu beachten (siehe Tabelle im Abschnitt "Typen" sowie "Ventilprinzip").
- Die Dreiwegeventile sind als Mischventile einzusetzen. Bitte Strömungsrichtung beachten (siehe Abb. "Ventilprinzip").
- Der Stellantrieb kann senkrecht über der Armatur bis zur waagerechten Lage montiert werden. Bei waagerechtem Einbau müssen die Antriebssäulen senkrecht übereinanderstehen. Ggf. Traverse nach Lösen der Befestigungsmutter drehen.
- Zum Abnehmen der Stellantriebshaube ist ein freier Raum von 100 mm über dem Antrieb erforderlich.
- Die Lieferung erfolgt mit einem Schutzkarton für den Stellantrieb. Bis zur Inbetriebnahme dient diese Abdeckung innerhalb der Bauphase und Rohrleitungsarbeiten als Stellantriebsschutz.
- Durchflusspfeil auf dem Ventilkörper unbedingt beachten! Umgekehrte Durchflussrichtung beeinträchtigt das Regelverhalten!

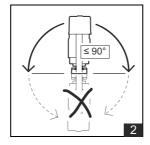
5.1 Stellantrieb auf ein Ventil montieren

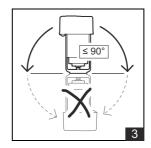
ACHTUNG

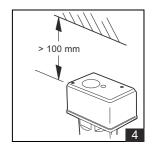
Quetschgefahr zwischen der Traverse und dem Federtopf!

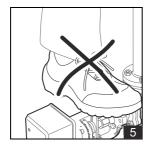
Die Notstellfunktion des Stellantriebs fährt das Ventil selbsttätig bei Spannungsunterbrechung mit hoher Federkraft in die untere Endlage!

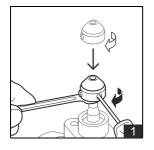


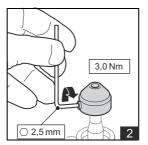

VORSICHT

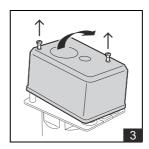

Verletzungsgefahr durch unerwartete Bewegungen des Stellantriebs!

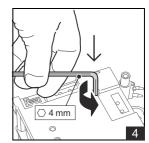

Der Stellantrieb darf ausschließlich im spannungsfreien Zustand montiert werden!

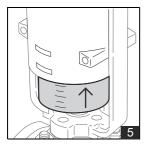

Einbauhinweise

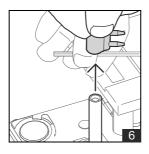


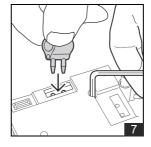


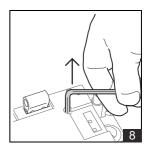


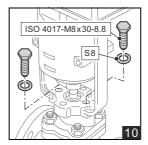

- ▶ 1 Nach Abkühlen der Rohrleitung kann mit der Stellantriebsmontage begonnen werden.
- 2 3 Es sind alle Einbaulagen auf der oberen Halbkugel erlaubt.
- ▶ 4 Das Gerät ist so zu montieren, dass darüber ein Freiraum von mindestens 100 mm bleibt.
- Antrieb nicht als Tritt oder Ablage nutzen.

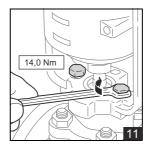

Montage

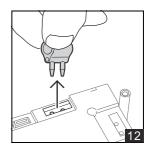


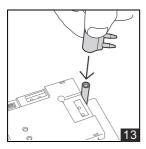


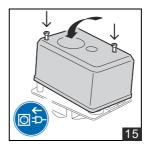




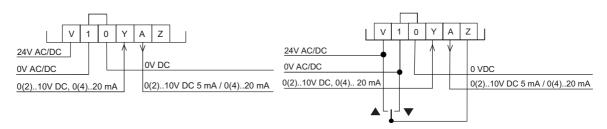




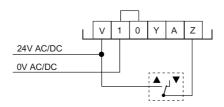




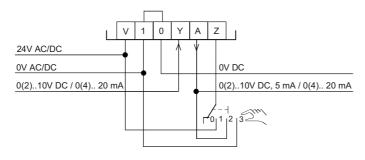
- Adapter bis zum Anschlag auf die Ventilstange schrauben. Das Drehmoment wird an der Ventilstange mit einem Maulschlüssel abgefangen.
- Adapter sichern. Die beiden Inbusschrauben gleichmäßig im Wechsel mit einem Innensechskant der Größe 2,5 mm und mit einem Drehmoment von 3 Nm anziehen.
- ▶ Beide Schrauben lösen und die Stellantriebshaube abnehmen.
- ▶ 4 5 Antrieb mit der Handverstellung (drehen mit Inbusschlüssel 4 mm) in die obere Position fahren.
- ▶ 6 7 Knebel zur Arretierung der Handverstellung einsetzen.
- ▶ 8 Inbusschlüssel 4 mm zur Handverstellung entnehmen.
- Stellantrieb auf das Ventil aufsetzen.
- ▶ 10 Beide Konsolenschrauben mit Unterlegscheiben einschrauben.
- ▶ 11 Konsolenschrauben mit einem Drehmoment von 14 Nm anziehen.
- ▶ 12 13 Knebel aus der Arretierung entfernen und auf die Knebelhalterung führen.
- ▶ 14 Antrieb fährt bedingt durch seine Rückstellfunktion zu. Dabei erfolgt automatisch die Adaption des Ventils mittels Automatikkupplung.
- ▶ 15 Stellantriebshaube wieder in ursprüngliche Position bringen und beide Schrauben festziehen.



6 Antrieb anschließen und in Betrieb nehmen


6.1 Anschlussbilder

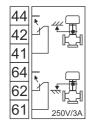
Stetiger Betrieb mA / V (0..100%)


Vorrangschaltung (Auf / Zu)

2-Punkt Betrieb (Auf / Zu)

Handbetrieb mit Betriebsartenschalter (Auto, Auf, Halt, Zu)

Handschalterstellung:


0 = Auto

1 = Auf (Ventilspindel gezogen)

2 = Halt

3 = Zu (Ventilspindel gedrückt)

Anschluss Hilfsschalter nur bei MF100-SR-E

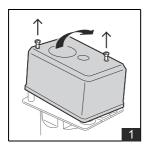
6.2 Elektrischer Anschluss

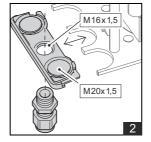
ACHTUNG

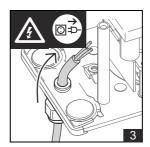
Die Elektroinstallation mit dem Geräteanschluss darf nur durch qualifiziertes Fachpersonal, z.B. durch den Elektroinstallateur vorgenommen werden. Hierbei sind die VDE-Bestimmungen und die örtlichen Vorschriften einzuhalten.

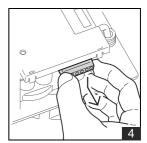
HINWEIS

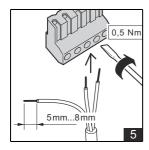
Der zulässige minimale Leitungsquerschnitt beträgt 0,75 mm². In Abhängigkeit der Leitungslängen ist eine entsprechende Anpassung an den Leitungsquerschnitt zu berücksichtigen. Hierbei sind die für den Anwendungsfall heranzuziehenden Installationsvorgaben gültiger VDE-Richtlinien zu berücksichtigen.

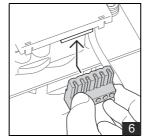

VORSICHT

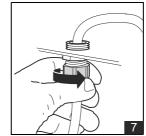

Der elektrische Anschluss des Stellantriebes ist als feste Installation und nur in Verbindung mit einem Ventil auszuführen!

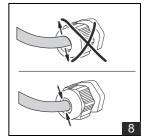

Als Zugentlastungsvorrichtung ist eine Verschraubung M16x1,5 im Lieferumfang des Stellantriebes enthalten. Bei dem Stellantrieb mit Hilfsschaltern ist zusätzlich eine Verschraubung M20x1,5 im Lieferumfang enthalten.

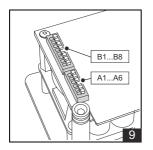

Der elektrische Anschluss erfolgt mittels Schraubklemmen (Anschlussdurchmesser 0,3..2,3 mm).

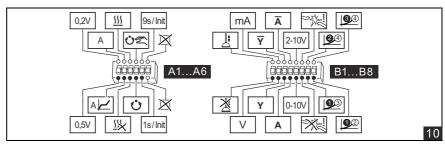

Elektrischer Anschluss MF100-SR

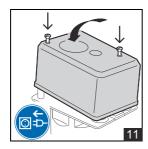


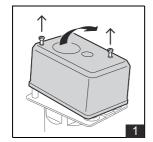


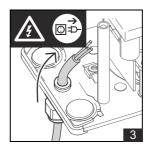


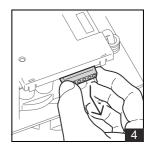


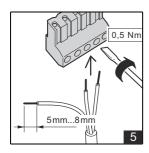


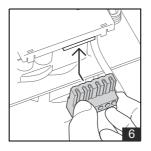


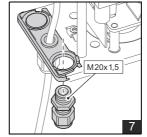


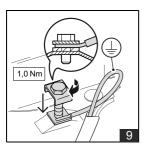


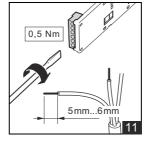

- ▶ Beide Schrauben lösen und die Stellantriebshaube abnehmen.
- Z Kabelverschraubung installieren.
- Anschlussleitung durch die Kabelverschraubung einführen.
- Anschlussstecker vom Stellantrieb entfernen.
- ▶ 5 Elektrischen Anschluss des Stellantriebs als feste Installation ausführen.
- ▶ 6 Konfektionierten Anschlussstecker einstecken.
- ▶ 7 8 Kabelverschraubung handfest anziehen bis sie das Kabel dicht abschließt.
- ▶ 9 10 Antriebsfunktionen mit den DIP-Schaltern anpassen (siehe Seite 38).
- ▶ 11 Stellantriebshaube wieder in ursprüngliche Position bringen und mit zwei Schrauben festschrauben. Abschließend die Spannungsversorgung einschalten.

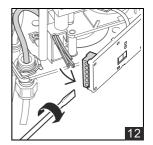

■ Elektrischer Anschluss MF100-SR-E

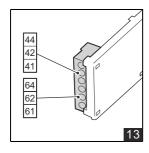


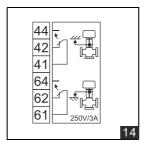


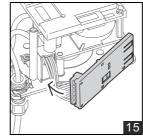


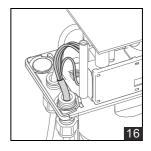


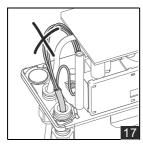


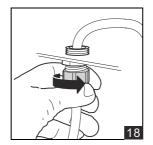


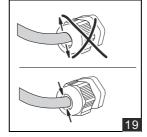


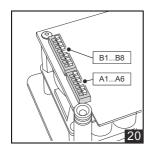


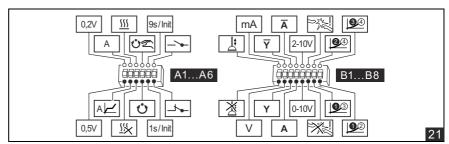


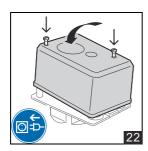


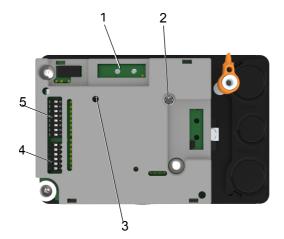












- Beide Schrauben lösen und die Stellantriebshaube abnehmen.
- Erste Kabelverschraubung installieren.
- ▶ 3 Anschlussleitung (Platine) durch die Kabelverschraubung einführen.
- Anschlussstecker vom Stellantrieb entfernen.
- ▶ 5 Elektrischen Anschluss des Stellantriebs als feste Installation ausführen.
- Konfektionierten Anschlussstecker einstecken.
- Zweite Kabelverschraubung installieren.
- ▶ 8 Anschlussleitung (Hilfsschalter) durch die Kabelverschraubung einführen.
- PE-Kabel an der PE-Klemme zwischen Klemmbügel und der quadratischen Unterlegscheibe (Cupal-Scheibe) anschließen. Dabei ist zu beachten, dass die kupferbeschichtete Seite der Unterlegscheibe zum Klemmbügel zeigt.
- ▶ 10 Anschlussleitung (Hilfsschalter) durch die Hilfsschalterhalterung führen.
- 11 bis 14 Elektrischen Anschluss des Hilfsschalters als feste Installation ausführen
- ▶ 15 Hilfsschalter in die Halterung stecken.
- ▶ 16 17 Anschlussleitungen nicht kreuzen.
- ▶ 18 19 Kabelverschraubungen handfest anziehen bis sie das Kabel dicht abschließt.
- 20 21 Antriebsfunktionen mit den DIP-Schaltern anpassen (siehe Seite 38).
- ▶ 22 Stellantriebshaube wieder in ursprüngliche Position bringen und mit zwei Schrauben festschrauben. Abschließend die Spannungsversorgung einschalten.

6.3 Inbetriebnahme

Bedien- und Funktionselemente unter der Stellantriebshaube

- Aufnahme des Knebels für die manuelle Handverstellung
- (2) Buchse für Innensechskantschlüssel
- (3) Status LED-Anzeige
- (4) DIP-Schalter A
- (5) DIP-Schalter B

6.3.1 Inbetriebnahmeschritte

Anpassung der Stellantriebsfunktionen

Die voreingestellten Antriebfunktionen können mit den DIP-Schaltern A und B angepasst werden. Die Schalter befinden sich unter der Antriebshaube seitlich auf der Leiterkarte.

VORSICHT

Kurzschlussgefahr! Das Hilfsmittel zur Betätigung der DIP-Schalter darf keine leitfähigen Bereiche der Leiterplatte kontaktieren.

Funktion Schalterstellung ON	Schalter (A)	Funktion Schalterstellung OFF (Werkseinstellung)
Hilfsschalter invertiert *1)	6	Hilfsschalter nicht invertiert
Stellgeschwindigkeit: 9 s/mm *2) (löst Init. aus)	5	Stellgeschwindigkeit: 1 s/mm (löst Init aus)
Handverstellung	4	Automatikbetrieb
Antriebsheizung: An (wird bei ca. < 8 °C eingeschaltet)	3	Antriebsheizung: Aus
Rückmeldung: absolute Position *3)	2	Rückmeldung: relative Position *4)
Hysterese: 0,2 V (0,4 mA)	1	Hysterese: 0,5 V (1 mA)

*1) nur bei MF100-SR-E

Bei Invertierung (A6 auf ON) ist der zu einer Endlage zugehörige Hilfsschalter nicht mehr in der Endlage eingeschaltet. Er ist jetzt ausserhalb der zugehörigen Endlage eingeschaltet.

HINWEIS

Bei Invertierung, A6 auf ON, sind beide Hilfsschalter in den Endlagen ausgeschaltet, wenn der Stellantrieb spannungslos ist.

Dies bedeutet, dass der Stellantrieb in der Sicherheitsendlage ist und der jeweilige Kontakt kann als Betriebsmeldung verwendet werden.

*2) Der Wert 9 s/mm wird durch eine Intervalfahrt erreicht (1,5 s Fahrt mit 1 s/mm, 6 s Pause).

*3) absolute Position:

Abhängig von eingestellter Ventilkennlinie kann Yout von Yin beim Erreichen der Ventilstellung abweichen. Es wird die absolute Position der Ventilstellung in der Stellungsrückmeldung Yout abgebildet. Beispiel gleichprozentige Kennlinie: Yin = $4 \text{ V} \rightarrow \text{Yout} = 3,5 \text{ V}$

*4) relative Position:

Unabhängig von eingestellter Ventilkennlinie ist Yin = Yout beim Erreichen der Stellposition.

Funktion Schalterstellung ON	Schalter (B)	Funktion Schalterstellung OFF (Werkseinstellung)
Kennlinie *5)	8	Kennlinie *5)
Kennlinie *5)	7	Kennlinie *5)
Drahtbrucherkennung: An *6)	6	Drahtbrucherkennung: Aus
Stellbereich (Yin + Yout): 210 V (420 mA) → 0100 %	5	Stellbereich (Yin + Yout): 010 V (020 mA) → 0100 %
Invertierung Yout:	4	Yout:
0100 % → 100 V (200 mA)		0100 % → 010 V (020 mA)
Invertierung Yin:	3	Yin:
010 V (020 mA) → 1000 %		010 V (020 mA) → 0100 % ∠
Signal (Yin + Yout): mA	2	Signal (Yin + Yout): V
VBS: An	1	VBS: Aus

*5) Einstellung der Kennlinie

DIP-Schalter B7	DIP-Schalter B8	Kennlinie
OFF	OFF	Kennlinie 1
ON	OFF	Kennlinie 2
OFF	ON	Kennlinie 3
ON	ON	Kennlinie 4

HINWEIS

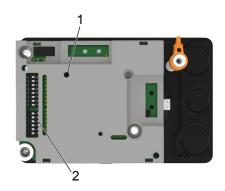
Die einzustellende Kennlinie hängt immer von der Anlagenhydraulik ab und ist individuell anzupassen. In den meisten Anwendungsfällen empfiehlt sich die Kennlinie 1, nicht invertiert (DIP-Schalter B3 = OFF).

^{*6)} Die Funktion ist nur beim eingestellten Stellbereich 2..10 V bzw. 4..20 mA verfügbar.

Netzversorgung einschalten

Die LED (1) blinkt grün.

Initialisierung, Anpassung an den Ventilhub


Der Initialisierungslauf zur Anpassung an den Ventilhub startet bei Erstinbetriebnahme einmalig automatisch.

Die Initialisierung erfolgt nur, wenn sich der DIP-Schalter A4 in Position OFF befindet.

Innerhalb der Initialisierung wird das Ventil einmal voll geöffnet. Der Hub wird gelernt.

Die Rückmeldung über Klemme A (Yout) erfolgt in diesem Fall mit einem Signal von ca. 12,5 V bzw. 0 mA

Während der Initialisierung blinkt die LED (1) grün. Die abgeschlossene Initialisierung wird mit Dauerlicht angezeigt.

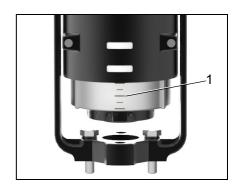
- 1 LED
- 2 DIP-Schalter A4

HINWEIS

Bei einer erneuten Montage (oder nach eventueller Änderung der Einstellung des maximalen Durchflusswertes am Ventil) muss eine neue Ventiladaption durch Neuinitialisierung durchgeführt werden.

Schalten Sie dafür den DIP-Schalter A5 hin und her (Wechsel der Schalterposition).

6.3.2 Status der LED Anzeigen


LED unter der Antriebshaube	Bedeutung	
LED grün leuchtend	normal Betrieb/Automatikbetrieb	
LED grün blinkend	VBS (Ventilblockierschutz)	
	Initialisierung (Ventiladaption)	
LED grün leuchtend + LED rot schnell blinkend =	·	
LED orange schnell blinkend	und Yin < 1 V bzw. 2 mA	
LED grün leuchtend + LED rot blinkend =	Sicherheitsendlage, Vorrangschaltung oder	
LED orange blinkend	Handbetrieb / Antrieb folgt nicht dem Stellsignal	
LED rot leuchtend	unlösbare Blockade	
LED rot blinkend	Initialisierung fehlgeschlagen / Antrieb folgt	
	nicht dem Stellsignal	
LED rot schnell blinkend	Betriebsspannung zu gering	

6.4 Stellantriebsfunktionen

Stellungsanzeige am Stellantrieb

Die aktuelle Hubposition des Ventils wird durch die Stellung der Hubskale (1) angezeigt.

Automatischer Blockierungslogarithmus

Tritt innerhalb des Ventilhubs eine Blockierung durch Fremdkörper in der Rohrleitung auf, meldet der Antrieb diese Störung durch folgende Rückmeldesignale an der Anschlussklemme A:

- ca. 12,5 V DC, wenn das Signal auf V (B2 = OFF) eingestellt ist
- 0 mA, wenn das Signal auf mA (B2 = ON) eingestellt ist

Durch einen automatischen Beseitigungsalgorithmus versucht der Stellantrieb anschließend mehrmals selbstständig die Ventilblockierung durch kurzzeitiges Anheben des Ventilkegels zu beseitigen.

Schaltbare Endlagenhysterese

Die Endlagenhysterese ist der Punkt, bei dem der Antrieb in die Endlage fährt.

Für die Hysterese werden die Werte 0,5 V (1 mA) oder 0,2 V (0,4 mA) über DIP-Schalter A1 eingestellt.

Beispiel: Bei Hysterese 0.5 V wird bei Yin < 0.5 V bzw. > 9.5 V die Endlage gefahren. Die Rückmeldung erfolgt in diesem Fall mit einem Signal von 0 V bzw. 10 V.

Rückmeldung

Die Rückmeldung ist getrennt vom Yin über den DIP-Schalter B4 invertierbar.

Die Ausgabe der Rückmeldung kann über DIP-Schalter A2 zwischen absoluter und relativer Position umgeschaltet werden. Das Signal wird in 2..10 V bzw. 4..20 mA ausgegeben, wenn der DIP-Schalter B5 in Schalterstellung ON ist.

Antriebsheizung

Die Antriebsheizung dient zur Vermeidung von Kondensationsbildung bei niedrigen Temperaturen. Die Aktivierung dieser Funktion erfolgt über den DIP-Schalter A3.

Handbetrieb

Vom Automatikbetrieb kann über einen externen Betriebsartenschalter in den Handbetrieb gewechselt werden (siehe Seite 33). Der Stellantrieb wird dann über die elektrischen Anschlüsse an Klemme V oder 1 angesteuert oder auf Halt gesetzt. Das stetige Y Eingangssignal wird hierbei übersteuert.Im Handbetrieb gibt es die Zustände *Automatikbetrieb / Halt / Zu / Auf*.

Handverstellung

Für eine Handverstellung ist die Antriebshaube abzunehmen und der Schalter A4 auf die Position ON (Handverstellung) zu stellen. Mittels Inbusschlüssel (Schlüsselaufnahme 4 mm) kann das Ventil in jede beliebige Position verstellt werden.

Anschließend wird der Stellantrieb mit dem Knebel arretiert. Siehe Abschnitt Stellantrieb auf ein Ventil montieren - Montage Bild 3 bis 8 (siehe Seite 32).

Vorrangschaltung

Die Vorrangschaltung (siehe Seite 33) ist eine Direktansteuerung und überlagert das stetige Y Eingangssignal für eine Ventilposition Auf oder Zu an der Klemme Z (z. B. Frostschutz oder Begrenzung).

VBS (Ventilblockierschutz)

Sofern es die Anlagenbedingungen zulassen, kann der Ventilblockierschutz bei der Inbetriebnahme aktiviert werden.

Der Ventilblockierschutz verhindert das Festsetzen des Kegels bei längerem Ventilstillstand, z. B. in der Sommerpause bei Heizungsanlagen.

Bei aktiviertem Ventilblockierschutz wird der Ventilkegel eine halbe Hubfahrt hin- und zurück gefahren, wenn innerhalb von 21 Tagen keine Hubbewegung erfolgte.

Diese Funktionalität ist über den DIP-Schalter B1 einschaltbar.

Sicherheitsendlage / Neusynchronisation der Endlage

Nach einem Spannungsreset oder nach Beendigung der Handverstellung über den DIP-Schalter erfolgt die Neusynchronisation der Endlage über eine Fahrt in die Sicherheitsendlage.

Zusätzlich wird die Sicherheitsendlage bei einem erkannten Drahtbruch angefahren (siehe Drahtbrucherkennung).

Die Sicherheitsendlage ist die Endlage, die der Stellantrieb bei Netzausfall mit Federkraft automatisch anfährt.

Die Rückmeldung über Yout erfolgt in diesem Fall mit einem Signal von ca. 12,5 V bzw. 0 mA, abhängig von der Stellung des DIP-Schalters B2.

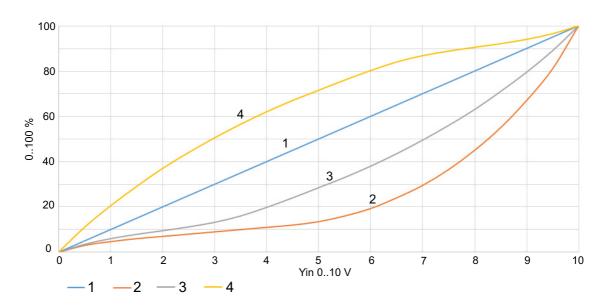
Dynamische Yin-Dämpfung / Ausgleich äußerer Störeinflüsse

Um ein Pendeln des Stellantriebs bei Überkopplung äußerer Störeinflüsse auf die Steuerleitung Y zu vermeiden, wird das Eingangshystereseband automatisch vergrößert.

Tritt die Störung nicht mehr auf, wird die Hysterese wieder auf minimale Werte zurückgesetzt. Durch diese Funktion werden außenseitige Störeinflüsse weitgehend verhindert und unnötige Temperaturschwankungen sowie Abnutzungen am Stellantrieb und Ventil vermieden.

Drahtbrucherkennung

Die Funktion ist nur bei aktivierter Drahtbrucherkennung (B6 = ON) und beim eingestellten Stellbereich 2..10 V bzw. 4..20 mA (B5 = ON) verfügbar.

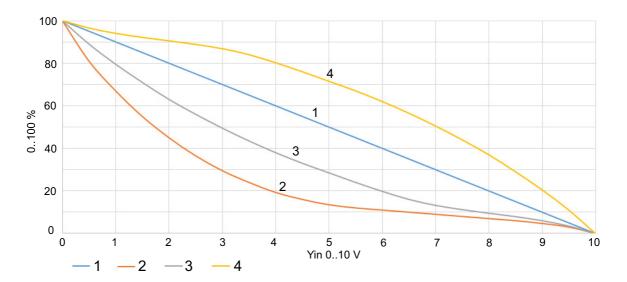

Wird kein Eingangssignal im Stetigbetrieb erkannt, fährt der Antrieb in die Sicherheitsendlage. Die Rückmeldung über Yout erfolgt in diesem Fall mit einem Signal von ca. 12,5 V bzw. 0 mA.

Stellrichtungen

Stellantrieb einfahrend		Durchgangsventile RGD, RGDEoffen		
		Durchgangsventile		
	RKBF, RBBK, RFBFschließen			
		Dreiwegeventile		
		RK, RB, RF, RWG Tor A:schließt		
		Tor B:öffnet		
Stellantrieb ausfahrend		Durchgangsventil RGD, RGDE schließen		
Notstellfunktion stromlos aus-		Durchgangsventile		
fahrend		RKBF, RBBK, RFBFoffen		
		Dreiwegeventile		
	. 41113	RK, RB, RF, RWG Tor A:öffnet		
		Tor B:schließt		

Kennlinien 1 bis 4

- DIP-Schalter B3 = OFF


i

HINWEIS

Mit dem DIP-Schalter B3 kann jede Kennlinie invertiert werden.

Kennlinien 1 bis 4 invertiert

- DIP-Schalter B3 = ON

6.5 Prioritäten der Rückmeldung der Betriebsarten

Priorität	Betriebsart	Rückmeldung
1	Handverstellung (per DIP-Schalter)	12,5 V oder 0 mA
2	Init. (automatisch oder per DIP-Schalter)	12,5 V oder 0 mA
3	Drahtbrucherkennung / Sicherheitsendlage	12,5 V oder 0 mA
4	Vorrangschaltung / Handbetrieb	Position 0100 %
5	VBS	Position 0100 %
6	Stetige Ansteuerung (Yin)	Position 0100 %

7 Instandhaltung

Wartung

Für den Stellantrieb sind keine Wartungstätigkeiten erforderlich.

Reinigung

Für den Stellantrieb sind keine Reinigungstätigkeiten erforderlich.

HINWEIS

Eine regelmäßige Inspektion der Anlage inkl. Funktionsprüfung des Stellantriebes wird empfohlen.

8 Fehler und Abhilfemaßnahmen

WARNUNG

Heiße bzw. kalte Oberflächen!

Wenn ein Hard- oder Softwarefehler vorliegt, kann es zu einer unerwarteten Stellbewegung und zum Öffnen des Ventils kommen. Schwere Verbrennungen bzw. Unterkühlungen beim Kontakt mit heißen bzw. kalten Oberflächen an Ventilen und Rohrleitungen sind möglich.

Schutzhandschuhe tragen

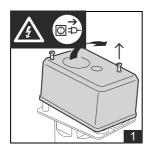
Fehler	Ursache	Ве	hebung
Stellantrieb regelt nicht im Automatikbetrieb	Netzausfall		Ursache feststellen und beseitigen.
	Stellantrieb ist falsch ange- schlossen		Anschluss prüfen und korrigieren.
	Kurzschluss durch falschen Anschluss		Anschluss prüfen und korrigieren.
Stellantrieb läuft instabil	Spannungsabfall durch zu lange elektrische Anschluss- leitung und/oder zu geringem Quer- schnitt	A	Betriebsspannung messen. Elektrische Anschlussleitungen neu berechnen und austauschen.
	Netzschwankungen größer als die zulässige Toleranz		Netzverhältnisse verbessern.
Stellantrieb setzt zeitweise aus	Zuleitung hat Wackelkontakt		Anschlüsse an der Klemmleiste kontrollieren und festziehen.
Stellantrieb fährt nicht oder nicht korrekt auf die vom	Ventil klemmt		Für ein leichtgängiges Ventil sorgen oder Ventil austauschen.
Eingangssignal vorgege- bene Ventilposition, Ventil schließt oder öffnet nicht	Zu hoher Differenzdruck		Hydraulik und Differenzdruck prüfen und einstellen lassen.
Scrinest oder offilet filetit	Hauptplatine defekt		Kontaktieren Sie Ihren Kieback&Peter-Ansprechpartner.

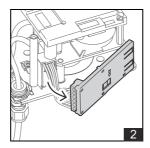
9 Instandsetzung

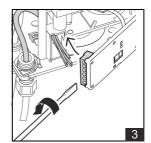
Am Montageort kann nur die Ventil-Stellantrieb-Kombination durch Austauschen von Ventil oder Stellantrieb in Stand gesetzt werden. Kontaktieren Sie Ihren Kieback&Peter-Ansprechpartner.

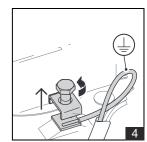
10 Außerbetriebnahme, Demontage und Entsorgung

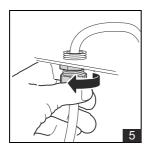
10.1 Stellantrieb außer Betrieb nehmen und demontieren

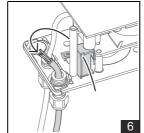


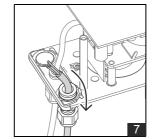

WARNUNG

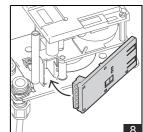

Heiße bzw. kalte Oberflächen!

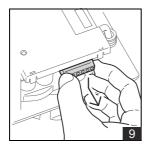

Wenn ein Hard- oder Softwarefehler vorliegt, kann es zu einer unerwarteten Stellbewegung und zum Öffnen des Ventils kommen. Schwere Verbrennungen bzw. Unterkühlungen beim Kontakt mit heißen bzw. kalten Oberflächen an Ventilen und Rohrleitungen sind möglich.

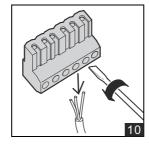

- Schutzhandschuhe tragen
- Vor Beginn der Demontagearbeiten muss dafür gesorgt werden, dass kein Differenzdruck im Ventilkörper auftritt. Ggf. Absperrschieber schließen und Pumpen ausschalten. Nach Abkühlen der Rohrleitung kann mit der Stellantriebsdemontage begonnen werden.
- Den Stellantrieb in spannungslosen Zustand bringen. Dann alle elektrischen Verbindungen lösen.

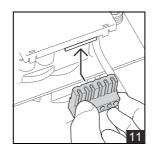


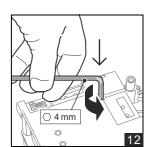


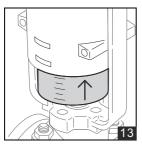


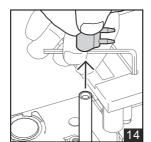


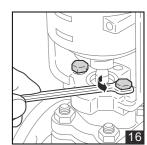


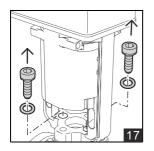




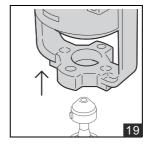


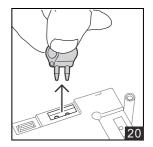


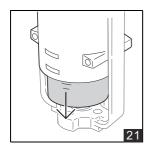


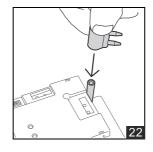


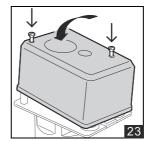


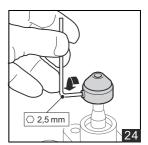














HINWEIS

Demontageschritte 2 bis 8 nur bei MF100-SR-E notwendig.

- ▶ 1 Den Stellantrieb in den spannungslosen Zustand bringen. Die beiden Schrauben lösen und die Stellantriebshaube abnehmen.
- 2 Hilfsschalter aus der Halterung entfernen.
- ▶ 3 Elektrische Leitungen aus der Anschlussklemme des Hilfsschalters lösen.
- ▶ 4 PE-Leitung von PE-Klemme trennen.
- 5 6 7 Kabelverschraubung lösen und Anschlusskabel vom Stellantrieb entfernen.
- ▶ 8 Hilfsschalter wieder einstecken.
- 9 Anschlussstecker vom Stellantrieb entfernen.
- ▶ 10 Elektrische Leitungen vom Anschlussstecker lösen.
- ▶ 11 Anschlussstecker wieder einstecken.
- ▶ 12 13 Antrieb mit der Handverstellung (Drehen mit Inbusschlüssel 4 mm) in die obere Position fahren.
- ▶ 14 15 Knebel zur Arretierung der Handverstellung einsetzen und den Inbusschlüssel wieder entnehmen.
- ► 16 Konsolenschrauben lösen.
- ▶ 17 Beide Konsolenschrauben mit Unterlegscheiben entfernen.
- ▶ 18 Die Automatikkupplung nach rechts drehen und Stellantrieb vom Ventil nehmen.
- Stellantrieb vom Ventil nehmen.

- Z0 Knebel von der Platine entfernen.
- 21 Der Antrieb fährt in die untere Position
- 22 Knebel auf die Knebelhalterung führen.
- ▶ 23 Stellantriebshaube wieder in ursprüngliche Position bringen und mit zwei Schrauben festschrauben.
- ▶ 24 Inbusschraube am Adapter mit Innensechskant der Größe 2,5 mm lösen.
- ▶ 25 26 Adapter von der Ventilstange abschrauben und entnehmen.

10.2 Ventil demontieren

- Am Ventilkörper darf kein Differenzdruck auftreten. Absperrarmatur schließen und Pumpen ausschalten.
- Verschraubungen zwischen Rohrleitung und den Ventilanschlüssen lösen.
- Ventil von Rohrleitung nehmen.

10.3 Entsorgungshinweis

Das Produkt ist gemäß den geltenden Gesetzen und Richtlinien in den Ländern der Europäischen Union nicht mit dem normalen Haushaltsmüll zu entsorgen. Dadurch ist der Schutz der Umwelt gewährleistet und die nachhaltige Wiederverwertung von Rohstoffen gesichert. Gewerbliche Nutzer wenden sich an ihren Lieferanten und gehen nach den Bedingungen des Kaufvertrages vor. Dieses Gerät darf nicht zusammen mit anderem Gewerbemüll entsorgt werden.

11 Ansprechpartner

Bestellung und Fragen

Zur Aufgabe einer Bestellung, für technische Informationen oder bei Fragen und Problemen kontaktieren Sie Ihren Kieback&Peter-Ansprechpartner.

Reparaturservice

Sollte Ihr Gerät einmal einen Defekt haben, wenden Sie sich ebenfalls an Ihren Kieback&Peter-Ansprechpartner, um das weitere Vorgehen abzuklären.

Kieback&Peter

EU-KONFORMITÄTSERKLÄRUNG EU-DECLARATION OF CONFORMITY

Kieback&Peter GmbH & Co. KG

Tempelhofer Weg 50 12347 Berlin / Germany

Dokumentationsbevollmächtigte/ Authorized Representative for Documentation: Lydia Bruchno / Eva Franke

bestätigt in alleiniger Verantwortung, dass das bezeichnete Produkt

Stellantrieb

declares in sole responsibility that the designated product

actuator

MF100-SR

in Verbindung mit den **Ventilen** der Baureihen

in combination with the valves of the series

RK/RB/RF/RGD/RWG/RGDE

auf das sich diese Erklärung bezieht, den Anforderungen to which this declaration refers, corresponds to the entspricht, die in den folgenden europäischen Richtlinien festgelegt sind:

- 2006/42/EG Maschinenrichtlinie
- 2014/35/EU Niederspannungsrichtlinie
- 2014/30/EU elektromagnetische Verträglichkeit
- 2011/65/EU RoHS-Richtlinie

Angewendete harmonisierte Normen:

requirements which are stipulated in the following European directives:

- 2006/42/EC Directive Machinery
- 2014/35/EU Low Voltage Directive
- 2014/30/EU electromagnetic compatibility
- 2011/65/EU Restriction of certain Hazardous Substances

Harmonised standards applied:

DIN EN 60730-2-14:2019-10 DIN EN ISO 12100:2011-03

Unterzeichnet für und im Namen von:

Signed for and on behalf of:

Berlin, 19/04/23

(ppa. Rainer Mahling)

Geschäftsleitung Solution & Support Center

Managing Director Solution & Support Center (i.V. Frank Külich)

Bereichsleitung Produktentwicklung

Head of Product Development

Kieback&Peter

EU-KONFORMITÄTSERKLÄRUNG EU-DECLARATION OF CONFORMITY

Kieback&Peter GmbH & Co. KG Tempelhofer Weg 50 12347 Berlin / Germany

Dokumentationsbevollmächtigte/ Authorized Representative for Documentation: Lydia Bruchno / Eva Franke

bestätigt in alleiniger Verantwortung, dass das bezeichnete Produkt

Stellantrieb

declares in sole responsibility that the designated

actuator

MF100-SR-E

in Verbindung mit den Ventilen der Baureihen

in combination with the valves of the series

RK/RB/RF/RGD/RWG/RGDE

auf das sich diese Erklärung bezieht, den Anforderungen to which this declaration refers, corresponds to the entspricht, die in den folgenden europäischen Richtlinien festgelegt sind:

- 2006/42/EG Maschinenrichtlinie
- 2014/35/EU Niederspannungsrichtlinie
- 2014/30/EU elektromagnetische Verträglichkeit
- 2011/65/EU RoHS-Richtlinie

Angewendete harmonisierte Normen:

requirements which are stipulated in the following European directives:

- 2006/42/EC Directive Machinery
- 2014/35/EU Low Voltage Directive
- 2014/30/EU electromagnetic compatibility
- 2011/65/EU Restriction of certain Hazardous Substances

Harmonised standards applied:

DIN EN 60730-2-14:2019-10 DIN EN ISO 12100:2011-03

Unterzeichnet für und im Namen von:

Signed for and on behalf of:

Berlin, 23/05/23

(ppa. Rainer Mahling)

Geschäftsleitung Solution & Support Center

Managing Director Solution & Support Center (i.V. Frank Külich)

Bereichsleitung Produktentwicklung

Head of Product Development

OM-F-060| Rev. 1.0 yom 24.05.2022 Template: QM-T-034, Rev 1.3

Klassifizierung: Öffentlich

13 Index

A
Ansprechpartner
Außerbetriebnahme
В
Bestimmungsgemäßer Gebrauch
D
Demontage
E
Elektrischer Anschluss
F
Fehler und Abhilfemaßnahmen
K
Konformitätserklärung
L
Lagerung
Lieferumfang
M
Montage
Q
Qualifikationen des Personals
Elektrofachkraft
Monteur7
R
Reparaturservice
S .
Schaltpläne
Т
Technische Daten
Transport
Typenschild
W
Wartung

